Operational Challenges of Modern Demand-Control Ventilation Systems: A Field Study

Author:

Zhao WeixinORCID,Kilpeläinen SimoORCID,Bask Wertti,Lestinen SamiORCID,Kosonen RistoORCID

Abstract

To maintain proper indoor air quality and increase energy efficiency, a demand-control ventilation (DCV) system has become a popular solution. This paper reports the findings of a field study conducted on the performance of the DCV systems in eight public buildings in southern Finland. We conducted the measurements in two stages. In the first stage, we made a site visit and measured the airflow rates in the design operation conditions of the chosen space. For the second stage, we left temperature/humidity data loggers to monitor the thermal conditions during the normal operation mode of the space. The results indicate that, out of the eight studied spaces, only one DCV system was performing according to design specifications. While the systems were operating in a suboptimal way, the flaws in functionality were mostly minor, and none of the sites had perceived indoor-air-quality- and/or thermal-condition-related problems during the time of measurement. Nonetheless, this result shows that the potential benefits of DCV were partially lost due to malfunctioning systems. Additionally, by only monitoring room air temperature (or IAQ) without airflow rate measurements in different operation modes, it is not possible to conclude whether the DCV system works properly or not.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference31 articles.

1. Energy Topics Energy https://energy.ec.europa.eu/topics/energy-efficiency_en

2. Energy Topics Energy https://energy.ec.europa.eu/index_en

3. EUR-Lex-32018L0844-EN-EUR-Lex https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32018L0844

4. Requirements for Well Functioning Demand Controlled Ventilation;Mysen;REHVA Eur. HVAC J.,2011

5. On the history of indoor air quality and health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3