Affiliation:
1. Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
Abstract
The use of Fiber Reinforced Polymer (FRP) materials for the external confinement of existing concrete or masonry members is now an established technical solution. Several studies in the scientific literature show how FRP wrapping can improve the mechanical properties of members. Though there are numerous methods for determining the compressive strength of FRP confined concrete, no generalized formulae are available because of the greater complexity and heterogeneity of FRP-confined masonry. There are two main objectives in this analytical study: (a) proposing an entirely new mathematical expression to estimate the compressive strength of FRP confined masonry columns using symbolic regression model approach which can outperform traditional regression models, and (b) evaluating existing formulas. Over 198 tests of FRP wrapped masonry were compiled in a database and used to train the model. Several formulations from the published literature and international guidelines have been compared against experimental data. It is observed that the proposed symbolic regression model shows excellent performance compared to the existing models. The model is easier, has no restriction and thereby it can be feasibly employed to foresee the behavior of FRP confined masonry elements. The coefficient of determination for the proposed symbolic regression model is determined as 0.91.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献