Windows and Doors Extraction from Point Cloud Data Combining Semantic Features and Material Characteristics

Author:

Cheng Baoquan12ORCID,Chen Shuhang3ORCID,Fan Lei4,Li Yange1,Cai Yuanzhi4ORCID,Liu Zeru2ORCID

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410083, China

2. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China

3. Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK

4. Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

Abstract

Point cloud data have become the primary spatial data source for the 3D reconstruction of building engineering, where 3D reconstructed building information models can improve construction efficiency. In such applications, detecting windows and doors is essential. Previous research mainly used red-green-blue (RGB) information or semantic features for detection, where the combination of these two features was not considered. Therefore, this research proposed a practical approach to detecting windows and doors using point cloud data with the combination of semantic features and material characteristics. The point cloud data are first segmented using Gradient Filtering and Random Sample Consensus (RANSAC) to obtain the 3D indoor data without intrusions and protrusions. As input, the 3D indoor data are projected to horizontal planes as 2D point cloud data. The 2D point cloud data are then transformed to 2D images, representing the indoor area for feature extraction. On the 2D images, the 2D boundary of each potential opening is extracted using an improved Bounding Box algorithm, and the extraction result is transformed back to 3D data. Based on the 3D data, the reflectivity of building material is applied to differentiate windows and doors from potential openings, and the number of data points is used to check the opening condition of windows and doors. The abovementioned approach was tested using the point cloud data representing one campus building, including two big rooms and one corridor. The experimental results showed that accurate detection of windows and doors was successfully reached. The completeness of the detection is 100%, and the correctness of the detection is 90.32%. The total time for the feature extraction is 22.8 s for processing 2 million point cloud data, including time from reading data of 10.319 s and time from showing the results of 4.938 s.

Funder

BIM Engineering Center of Anhui Province

Fundamental Funds for the Central Universities of Central South University

National Natural Science Foundation of China, China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3