Mapping Two Decades of AI in Construction Research: A Scientometric Analysis from the Sustainability and Construction Phases Lenses

Author:

Regona Massimo1,Yigitcanlar Tan1ORCID,Hon Carol K. H.1ORCID,Teo Melissa1

Affiliation:

1. City 4.0 Lab, School of Architecture and Built Environment, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia

Abstract

The construction industry plays a vital role in the urbanization process and global economy, and there is a growing interest in utilizing artificial intelligence (AI) technologies to improve sustainability, productivity, and efficiency. However, there is a lack of comprehensive analysis regarding the progression of AI in the construction context, particularly from the sustainability angle. This study aims to fill this gap by conducting a scientometric analysis of AI research in construction by focusing on historical clusters, emerging trends, research clusters, and the correlation between sustainability pillars and key project stages. A Scopus search, between January 2000 and July 2023, was conducted that used 25 construction industry-related keywords, resulting in a total of 9564 publications. After evaluating practical AI applications in construction, 3710 publications were selected for further analysis using VOSviewer for visual diagrams and to further understand connections and patterns between literature. The findings revealed that: (a) Literature on AI in construction has experienced steady growth over the past two decades; (b) Machine learning, deep learning, and big data are seen as the key enabling digital technologies in the construction sector’s performance; (c) Economic and governance pillars of sustainability exhibit the highest potential for AI adoption; (d) Design and construction phases demonstrate substantial advantages for AI adoption; (e) AI technologies have become, despite adoption challenges, a strong driver of construction industry modernization, and; (f) By incorporating AI, the construction industry can advance towards a more sustainable future by consolidating its processes and practices.

Funder

Australian Research Council Discovery Grant Scheme

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3