Approximating Helical Pile Pullout Resistance Using Metaheuristic-Enabled Fuzzy Hybrids

Author:

Ahmadianroohbakhsh Mohammadmehdi1,Fahool Farzad2ORCID,Pour Mohammad3,Mojtahedi S.4ORCID,Ghorbanirezaei Behnam5,Nehdi Moncef6ORCID

Affiliation:

1. Department of Geotechnical Engineering, Estahban Branch, Islamic Azad University, Estahban 1477893855, Iran

2. Department of Mining Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran

3. Department of Civil Engineering, Shahid Bahonar University, Kerman 7616913439, Iran

4. Department of Infrastructure Engineering, University of Melbourne, Melbourne 3010, Australia

5. Department of Civil Engineering, Islamic Azad University, Central Tehran Branch, Tehran 1477893855, Iran

6. Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada

Abstract

Piles have paramount importance for various structural systems in a wide scope of civil and geotechnical engineering works. Accurately predicting the pullout resistance of piles is critical for the long-term structural resilience of civil infrastructures. In this research, three sophisticated models are employed for precisely predicting the pullout resistance (Pul) of helical piles. Metaheuristic schemes of gray wolf optimization (GWO), differential evolution (DE), and ant colony optimization (ACO) were deployed for tuning an adaptive neuro-fuzzy inference system (ANFIS) in mapping the Pul behavior from three independent factors, namely the embedment ratio, the density class, and the ratio of the shaft base diameter to the shaft diameter. Based on the results, i.e., the Pearson’s correlation coefficient (R = 0.99986 vs. 0.99962 and 0.99981) and root mean square error (RMSE = 7.2802 vs. 12.1223 and 8.5777), the GWO-ANFIS surpassed the DE- and ACO-based ensembles in the training phase. However, smaller errors were obtained for the DE-ANFIS and ACO-ANFIS in predicting the Pul pattern. Overall, the results show that all three models are capable of predicting the Pul for helical piles in both loose and dense soils with superior accuracy. Hence, the combination of ANFIS and the mentioned metaheuristic algorithms is recommended for real-world purposes.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3