Post-Fire Seismic Performance of Concrete-Filled Steel Tube Frame Structures Considering Soil-Structure Interaction (SSI)

Author:

Wang Weiwei1,Lyu Xuetao2,Zheng Jun1,Yi Shanchang3,Li Jiehong4,Yu Yang4

Affiliation:

1. School of Architectural Engineering, Guangzhou Vocational and Technical University of Science and Technology, Guangzhou 510000, China

2. School of Transportation and Civil Engineering, Foshan University of Science and Technology, Foshan 528231, China

3. School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China

4. Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Kensington, NSW 2052, Australia

Abstract

Currently, reinforced thin-walled irregular steel tube concrete frame structures have been applied in engineering, but there are few researches on the seismic performance of this type of structures after fire. The seismic performance of structures after fire is generally carried out based on rigid foundation conditions. Therefore, it is of certain engineering and theoretical value to study the seismic performance considering the SSI (soil–structure interaction) in this paper. ABAQUS is employed to establish the finite element models of the reinforced thin-walled irregular steel tube concrete frame structure considering the SSI after a fire. The paper analyzes the impact of different site conditions and fire durations on the structural natural vibration period, maximum acceleration, inter-story shear force, and maximum inter-story displacement angle. The results show that the consideration of the SSI increases the basic natural vibration period of the structure by 10–30%. The softer the soil and the longer the fire duration, the more significant the increase. For harder soil, lower seismic intensity, and shorter fire duration, the acceleration assigned to the structure and foundation after considering the SSI is smaller than the results assuming a rigid foundation. The change in inter-story shear force is mainly determined by the acceleration of the structure and foundation. The inter-story displacement angle increases when considering the SSI, and the increase is more significant with softer soil, larger seismic wave acceleration amplitude, and longer fire duration.

Funder

National Natural Science Foundation of China

Guangdong Provincial Department of Education’s Characteristic Innovation Project for Colleges and Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3