Bond-Damaged Prestressed AASHTO Type III Girder-Deck System with Retrofits: Parametric Study

Author:

Ni Haoran1,Aboutaha Riyad1

Affiliation:

1. Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA

Abstract

This research describes an in-depth analysis of the flexural strength of a strengthened AASHTO Type III girder-deck system with debonding-damaged strands based on the finite element software ABAQUS 6.17. To investigate the stand-debonding impact and retrofit, two strengthening techniques by the separate use of carbon fiber-reinforced polymer (CFRP) and steel plate (SP) were proposed. A detailed finite element analysis (FEA) model considering strand debonding, material deterioration, and retrofitting systems was developed and verified against relevant experimental data obtained by other researchers. The proposed FEA model and the experimental data were in good agreement. The sensitivity of the numerical model to the mesh size, element type, dilation angle and coefficient of friction was also investigated. Based on the verified FEA model, 156 girder-deck systems were studied, considering the following variables: (1) debonding level, (2) span-to-depth ratio (L/d), (3) strengthening type, and (4) strengthening material amount. The results indicated that the debonding level and span-to-depth ratio had a major effect on both load–deflection behaviors and the ultimate strength. The relationships between the enhancement of the ultimate strength and the thickness of the strengthening material were obtained through regression equations with respect to the CFRP- and SP-strengthened specimens. The coefficient of determination (R2) was 0.9928 for the CFRP group and 0.9968 for the SP group.

Funder

Department of Civil and Environmental Engineering at Syracuse University

Publisher

MDPI AG

Reference33 articles.

1. Harries, K.A., Kasan, J., and Aktas, J. (2009). No. FHWA-PA-2009-008-PIT 006.

2. Analysis of bond stress distribution for prestressing strand by Standard Test for Strand Bond;Dang;Eng. Struct.,2014

3. Characteristics of basalt fiber as a strengthening material for concrete structures;Sim;Compos. Part B Eng.,2005

4. Local and global bond characteristics of steel reinforcing bars;Haskett;Eng. Struct.,2008

5. Improved algorithm for efficient and realistic creep analysis of large creep-sensitive concrete structures;Yu;ACI Struct. J.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3