Wind Effects on Re-Entrant Wing Faces of Plus Plan-Shaped Building

Author:

Kumar Arun1,Meena Rahul Kumar2ORCID,Raj Ritu1ORCID,Khan Mohammad Iqbal3ORCID,Khatib Jamal M.4ORCID

Affiliation:

1. Department of Civil Engineering, Delhi Technological University, New Delhi 110042, India

2. Department of Civil Engineering, Punjab Engineering College, Chandigarh 160012, India

3. Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

4. Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK

Abstract

The wind flow patterns and pressure distribution around a plus-shaped building are significantly influenced by re-entrant corner dimensions and building height. The present study aims to find the wind effects and study the pressure distribution with different flow patterns. The building has a plan area of approximately 300 square meters and a height of 50 m, maintaining equal lengths for the re-entrant corners. The research study is performed using the ANSYS CFX academic version. The study employs diverse visualizations, featuring the pressure coefficient (CPe), vertical and specific surface streamlines, and pressure contours. Wind incidence angles for the study are varied from 0° to 90° at an interval of 15°. Building dimensions are scaled down as per the ASCE wind tunnel test manual, and the length scale is kept at 1:100 for CFD investigation. This approach yields crucial insights into the circulation of wind patterns and the distribution of pressure across a wide range of wind incidence angles. The influence of streamlines in the bottom portion of the building model is relatively minimal. In contrast to the upper portion, the bottom exhibits robust vortices, particularly for the wind angles varying from 0° to 30°. Positive pressure is observed on the windward face, and the leeward face and side face exhibit negative pressure. This study furnishes valuable insights into flow patterns and pressure distribution across a wide range of wind incidence angles from 0° to 90° at an interval of 15°. These findings contribute significantly to a thorough comprehension of the wind flow patterns and pressure distribution around the plus-shaped building model.

Funder

King Saud University, Riyadh, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3