In Search for Untapped Energy-Saving Potential in Green and Smart Higher Educational Buildings—An Empirical Case Study Involving the Building Occupants

Author:

Bäcklund Katarina1ORCID,Molinari Marco1,Lundqvist Per1

Affiliation:

1. Department of Energy Technology, KTH Royal Institute of Technology, Brinellvägen 68, 11428 Stockholm, Sweden

Abstract

Energy-intense activities and the unpredictable and complex behavior of building occupants lead to an increase in building energy demand. It is, therefore, crucial to study underlying factors for building energy demand related to the users. Higher educational buildings are relevant to study for several reasons: they host the future workforce and citizens, they are predicted to increase in numbers, and they represent a building type less studied. Furthermore, green-rated buildings equipped with smart building systems also represent a research gap that is relevant to address since such a building design involves IoT-functionalities and digital features for the building occupants to interact with. There is also a conceivable risk that if the users know that the building is green-rated and technologically advanced, this may alter their perception of the building operation and thus their behavior. To study the relationship between building occupants and such green and smart educational structure, a survey was conducted in a Swedish higher educational building; as a result, 300 responses were collected and analyzed. The responses revealed that the building occupants act with energy awareness, and they are conscious about energy-saving behaviors. One building feature in particular was studied: the Digital Room Panels (DRPs). The DRP allows the building occupants to modify the indoor temperature and is, therefore, essential for thermal comfort. One key finding from the survey revealed that 70% of the building occupants did not know how the DRPs operate. This study argues that this result can be explained with a lack of communication and user friendliness. Inadequate interactions with building systems could also result in opportunities for energy saving might not be realized. The findings of this case study led to valuable recommendations and suggestions for future research endeavors.

Funder

Swedish Energy Agency

Swedish Foundation for Strategic Research

Digital Futures

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3