A Simple Approach for the Design of Ductile Earthquake-Resisting Frame Structures Counting for P-Delta Effect

Author:

Shehu ,Angjeliu ,Bilgin

Abstract

In the last decades, the possibility to use the inelastic capacities of structures have driven the seismic design philosophy to conceive structures with ductile elements, able to obtain large deformations without compromising structural safety. In particular, the utilization of high-strength elements combined with the purpose of reducing inertial masses of the construction has highlighted the second-order effect as a result of the “lightweight” structure’s flexibility. Computational aspects of inclusion of the second-order effects in the structural analysis remain an open issue and the most common method in the current design practices uses the stability coefficient θ. The stability coefficient estimates the ratio between the second-order effect and lateral loads’ effects. This coefficient is used then to amplify the lateral loads’ effects in order to consider the second-order effects, within a certain range proposed by codes of practices. In the present paper, we propose a simple approach, as an alternative to the stability coefficient method, in order to take into consideration P-Delta effects for earthquake-resisting ductile frame structures in the design process. The expected plastic deformations, which can be assessed by the behavior factor and the elastic deformations of the structure, are expected to magnify the P-Delta effects compared to those estimated from an elastic approach. The real internal forces are approximated by modifying the stiffness matrix of the structure in such a way as to provide a compatible amplification effect. This concept is herein implemented with a three-step procedure and illustrated with well-documented case studies from the current literature. The obtained results show that the method, although simple, provides a good approximation compared to more refined and computationally expensive methods. The proposed method seems promising for facilitating the design computations and increasing the accuracy of the internal forces considering the second-order effects and the amplification from the inelastic deformations.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference35 articles.

1. Seismic Design, Assessment and Retrofitting of Concrete Buildings;Fardis,2009

2. European Macroseismic Scale 1998;Grünthal,1998

3. Ductility of Seismic-Resistant Steel Structures;Gioncu,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3