Affiliation:
1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
2. School of Civil Engineering, Central South University, Changsha 410075, China
Abstract
An analytical study was carried out on an anchored circular pit with a submerged free surface in layered soil. The seepage field around the anchor circular pit was divided into three zones. Separate variable method was used to obtain the graded solution forms of head distribution in the column coordinate system for each of the three regions. Combined with the continuity condition between the regions the Bessel function orthogonality was used to obtain the explicit analytical solution of the seepage field in each region, and the infiltration line was determined. Comparison with the calculation results of Plaxis 2D 8.5 software verified the correctness of the analytical solution. Based on the analytical solution, the influence of the radius of the pit and the distance of the retaining wall from the top surface of the impermeable layer on the total head distribution on both sides of the retaining wall was analyzed. And the variation in the infiltration line was determined with the above parameters. The results show that as the pit radius, r, decreased, the total head on both sides of the retaining wall gradually increased, and the height of the submerged surface drop also increased. As the distance, a, between the retaining wall and the impermeable boundary at the bottom increased, the hydraulic head on the outer side of the retaining wall decreased and the head on the inner side increased. The height of the submerged surface drop increased with decreasing depth of insertion of the retaining wall. The depth of insertion of the retaining wall had a greater influence on the degree of diving surface drop than the pit radius.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献