Research on the Preferred Illuminance in Office Environments Based on EEG

Author:

Tong Li1,Liu Nian1,Hu Songtao1,Lu Mingli1,Zheng Yuxi1,Ma Xiaohui1

Affiliation:

1. School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China

Abstract

The quality of the indoor light environment in buildings directly influences the emotional state, health condition, and work efficiency of people. The application of EEG to indoor light environments is beneficial to further reveal the neural mechanisms of light comfort. In this study, the absolute power of spontaneous EEG was calculated as an objective physiological index, and its trend with the illuminance level of the task area was analyzed. Then, the absolute power of the band, which has the strongest correlation with subjective evaluation and task performance, was selected as the characteristic value. The subjective and objective parameters were validated to explore the preferred illuminance choices for subjects’ comfort and efficiency during the rest stage and the task stage, respectively. The results showed that the power of the δ band and β band at partial channels in the parietal region had statistically significant differences under five illuminance levels in the resting state. The total logarithmic power of EEG and the logarithmic power of the δ band at the Cz channel were negatively correlated with the subjective evaluation. The total logarithmic power of EEG was relatively low when the subjective evaluation was comfortable. There was no statistical difference in the total EEG logarithmic power among the five illuminance levels in the task state, but the subjects had the highest performance indicator and the best cognitive task performance at 500 lux and 750 lux conditions. This research may provide a design reference for the selection of task area illuminance levels for staff during high-intensity mental work and rest.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3