A Compressive Load Bearing Analysis of 3D-Printed Circular Elements

Author:

Giwa Ilerioluwa1ORCID,Kazemian Ali12ORCID,Gopu Vijaya3,Rupnow Tyson3

Affiliation:

1. Bert S Turner Department of Construction Management, Louisiana State University, Baton Rouge, LA 70803, USA

2. Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA

3. Louisiana Transportation Research Center, Louisiana Department of Transportation, Baton Rouge, LA 70803, USA

Abstract

Large-scale construction 3D printing is a promising platform technology that can be leveraged to fabricate structural elements such as columns, piers, pipes, and culverts. In this study, the axial compression and split tensile performance of 3D-printed steel-fiber-reinforced circular elements fabricated with different configurations (hollow, hybrid, mold-cast, and fully 3D-printed) is evaluated. This study further investigates the performance of multi-material circular hybrid elements (3D-printed shells with different backfilled core materials) in an attempt to assess their suitability as a new construction paradigm. The experimental results revealed that the fully 3D-printed steel-fiber-reinforced circular elements exhibited a higher load capacity (up to 36%) and a distinct crack pattern compared to the other configurations. The void ratio of circular elements has varying effects on its axial load capacity depending on the printing material and significantly influences its splitting tensile load capacity. Furthermore, the compatibility between the 3D-printed shell and the cast-in-place core is identified as an influential factor in the structural performance of the hybrid elements. The results suggest a promising construction approach where low-cement material can be utilized as infill material for a cost-effective 3D-printed permanent formwork, offering a viable solution for specific infrastructure development applications.

Funder

Louisiana Transportation Research Center (Transportation Innovation for Research Exploration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3