Advanced Multi-Body Modelling of DCCSS Isolators: Geometrical Compatibility and Kinematics

Author:

Bianco Vincenzo,Monti Giorgio,Belfiore Nicola PioORCID

Abstract

The effectiveness of Double Concave Curved Surface Sliders (DCCSS), which initially spread under the name of Double Friction Pendulum (DFP) isolators, was already widely proven by numerous experimental campaigns carried out worldwide. However, many aspects concerning their dynamical behavior still need to be clarified and some details still require improvement and optimization. In particular, due to the boundary geometrical conditions, sliding along the coupled surfaces may not be compliant, where this adjective is adopted to indicate an even distribution of stresses and sliding contact. On the contrary, during an earthquake, the fulfillment of geometrical compatibility between the constitutive bodies naturally gives rise to a very peculiar dynamic behavior, composed of continuous alternation of sticking and slipping phases. Such behavior yields a temporary and cyclic change of topology. Since the constitutive elements can be modelled as rigid bodies, both approaches, namely Compliant Sliding and Stick-Slip, can be numerically modelled by means of techniques typically adopted for multi-body mechanical systems. With the objective of contributing to the understanding and further improvement of this technology, a topology-changing multi-body mechanical model was developed to simulate the DCCSS. In the present work, attention is focused on details regarding geometrical compatibility and kinematics, while the complete dynamics is presented in another work. In particular, for the sake of comparison, the kinematic equations are presented and applied not only for the proposed Stick-Slip approach, but also for the currently accepted Compliant Sliding approach. The main findings are presented and discussed.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3