Hygrothermal Simulation of Interior Insulated Brick Wall—Perspectives on Uncertainty and Sensitivity

Author:

Knarud Jon Ivar1ORCID,Kvande Tore1ORCID,Geving Stig2

Affiliation:

1. Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

2. Department of Architecture, Materials and Structures, SINTEF Community, NO-7465 Trondheim, Norway

Abstract

Energy retrofit of existing masonry buildings has become attractive to meet demands for reduction in energy consumption. Retrofit may, however, introduce moisture risk that needs to be assessed. Hygrothermal simulation analysis is often conducted in this respect. Nevertheless, hygrothermal simulation of interior insulated bare brick masonry exposed to driving rain can be challenging due to the many aspects involved that determine heat- and moisture-transport behavior, and which should be addressed by an applied model. The present study highlights uncertainty encountered when establishing a hygrothermal simulation model. Furthermore, different modeling choices or simplifications are studied to determine impact on results. As a check of realism, results of 2D simulations are compared to results of a previous laboratory experiment of masonry wall segments subjected to severe rain wetting and subsequent drying. Rain absorption is modeled conservatively, attempting simulation results to envelope experiment results. Conservative results were not achieved for a relative humidity sensor placed on the masonry interior without inclusion of a “leaky” mortar joint. Simultaneously, the conservative approach underestimated drying experienced by the relative humidity sensor in two of three experiment wall segments. Regarding beam-end moisture content, the modeling approach conservatively enveloped experiment results in 3D but not in 2D.

Funder

Research Council of Norway

Centre for Research-based Innovation “Klima 2050”

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3