Research on the Rolling Process of SMA-13 Asphalt Surface Layer for Bridge Decks Based on Compaction and Skid Resistance Equilibrium Problems

Author:

Zhou Zhilin1,Zhang Wenting2,Liang Guosong3,Chen Bo24,Yan Junjian2

Affiliation:

1. Zhuhai Xianghai Bridge Co., Ltd., West Renmin Road, Xiangzhou District, Zhuhai 519000, China

2. Guangzhou Xiaoning Roadway Engineering Technology Research Institute Co., Ltd., Wushan Road, Tianhe District, Guangzhou 510641, China

3. Guangdong Hualu Transport Technology Co., Ltd., Congyun Road, Baiyun District, Guangzhou 510080, China

4. School of Transportation and Civil Engineering and Architecture, Foshan University, Chanchen District, Foshan 528000, China

Abstract

In order to solve the equilibrium problem related to compaction degree, structural integrity of skid resistance, and skid resistance of asphalt wearing layer on a concrete bridge deck, the influence of rolling mode on compaction degree, structural integrity of skid resistance, and skid resistance performance was analyzed according to compaction curve characteristics, image processing technology, and laser method from the compaction mechanism and temperature control of rolling equipment. The results showed that the compaction degree and rolling times of an SMA-13 asphalt wearing course on the bridge deck could be characterized by a logarithmic model, and the model parameters had clear physical significance. Compared with the vibratory roller, the oscillation roller could achieve a greater and more stable compaction degree of the mixture and maintain a better density, compaction degree, and void ratio after 5 times of oscillation rolling. The pavement wear characteristics were extracted by a digital image method. The results showed that with the increase in rolling times, the rolling temperature decreased gradually, and the wear rate of surface texture increased significantly. The multiscale evaluation of pavement antiskid performance by a laser method showed that the surface structure gradually decreased and tended to be stable (1.2 mm) with the increase in rolling times of the vibratory roller, the microscopic texture density increased with the increase in rolling times, and the proportion of acute angle (<90°) in the peak angle of the surface texture profile decreased with the increase in rolling times. The SMA-13 asphalt wearing course on the bridge deck was rolled by a vibratory roller for 6 times, so as to achieve the balance of compaction degree, structural integrity, and skid resistance.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3