Indoor Air Quality and Thermal Environment Assessment of Scottish Homes with Different Building Fabrics

Author:

Moreno-Rangel Alejandro12ORCID,Sharpe Tim12ORCID,McGill Gráinne12,Musau Filbert1

Affiliation:

1. Mackintosh Environmental Architecture Research Unit, The Glasgow School of Art, 167 Renfrew Street, Glasgow G3 6RQ, UK

2. Department of Architecture, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK

Abstract

The ongoing climate change and policies around it are changing how we design and build homes to meet national carbon emission targets. Some countries such as Scotland are adopting higher-energy-efficient buildings as minimum requirements in the building regulations. While net zero homes might be more energy-efficient and emit fewer operational carbon emissions, we have yet to fully understand the influence on the indoor environment, particularly on indoor air quality (IAQ) and thermal comfort. This study compares the IAQ of three homes in Scotland with equal internal layouts and designs but different building fabrics. The homes represent the minimum Scottish building regulations (2015), the Passivhaus standard and the Scottish ‘Gold Standard’. Temperature, relative humidity, PM2.5 and total volatile organic compounds (tVOC) were measured at five-minute intervals for seven months and compared to occupants’ subjective responses to the IAQ. All three homes had temperatures above the recommended thresholds for overheating. Measured hygrothermal conditions were within the ideal range 66.4% of the time in the Passivhaus, 56.4% in the Gold Standard home and 62.7% in the control home. Measured IAQ was better in homes with higher energy efficiency, particularly tVOC. For instance, indoor PM2.5 in the Passivhaus were 78.0% of the time below the threshold, while in the standard home the figure was 51.5%, with a weak correlation with outdoor PM2.5 (Passivhaus: B rs = 0.167, K rs = 0.306 and L rs = 0.163 (p < 0.001); Gold: B rs = −0.157, K rs = 0.322 and L rs = 0.340 (p < 0.001); Control: B rs = −0.111, K rs = 0.235 and L rs = 0.235 (p < 0.001)). TVOCs in the Passivhaus were 81.3%, while in the control home they were 55.0%. While the results cannot be generalised, due to the small sample, this study has significant policy implications, particularly in Scotland, exhibiting the importance of IAQ in current building legislation and sustainable assessment methods.

Funder

CONACyT

AirBoxLab

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference60 articles.

1. Energy efficiency in industry: EU and national policies in Italy and the UK;Malinauskaite;Energy,2019

2. European Commission (2011). Roadmap for Moving to a Low-Carbon Economy in 2050, European Commission.

3. Department for Business Energy & Industrial Strategy (2021). Net Zero Strategy: Build Back Greener, Department for Business Energy & Industrial Strategy.

4. Brinkmann, R. (2022). The Palgrave Handbook of Global Sustainability, Palgrave Macmillan.

5. Passivhaus;Encyclopedia,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3