Structural Behavior of Reinforced Concrete Beams Containing Nanomaterials Subjected to Monotonic and Cyclic Loadings

Author:

Mohamed Gouda A.,Sallam Ezzaat A.ORCID,Elbelacy Ahmed N.ORCID

Abstract

The use of nanomaterials improves the performance of reinforced concrete (RC) beams in terms of cracking load, failure load, and deflection. To further evaluate this improvement, the behavior of RC beams subjected to cyclic loading has to be experimentally investigated. In the present study, the effect of adding nanomaterials to RC beams was studied experimentally under monotonic and cyclic loadings. Eight RC beams with the dimensions of 2200 mm × 350 mm × 120 mm were prepared and divided into two groups. Both groups were tested under three-point bending, but one group was tested monotonously whereas the other group was tested cyclically. Each group consisted of four beams. The first beam in each group was tested without adding any nanomaterials. Nanotitanium, nanoaluminum, and nanosilica were added to the concrete mixes of the remaining three to replace 1% of the cement content. The performances of the tested beams were compared in terms of load-deflection curves, failure mode, cracking load, failure load, bending stiffness, toughness, and residual strength ratio (RSR). The results from both monotonic and cyclic loadings indicated better performances when nanotitanium was used.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference27 articles.

1. Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations

2. The National Nanotechnology Initiative—Strategic Plan, December 2007,2007

3. Unbounding the Future: The Nanotechnology Revolution;Drexler,1991

4. Innovation in use and research on cementitious material

5. Experimental investigation of sound transmission loss in concrete containing recycled rubber crumbs;Chalangaran;Adv. Concr. Constr.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3