3D Indoor Environment Abstraction for Crowd Simulations in Complex Buildings

Author:

Aleksandrov Mitko,Heslop David J.,Zlatanova SisiORCID

Abstract

This paper presents an approach for the automatic abstraction of built environments needed for pedestrian dynamics from any building configuration. The approach assesses the usability of navigation mesh to perform realistically pedestrian simulation considering the physical structure and pedestrian abilities for it. Several steps are examined including the creation of a navigation mesh, space subdivision, border extraction, height map identification, stairs classification and parametrisation, as well as pedestrian simulation. A social-force model is utilised to simulate the interactions between pedestrians and an environment. To perform quickly different 2D/3D geometrical queries various spatial indexing techniques are used, allowing fast identification of navigable spaces and proximity checks related to avoidance of people and obstacles in built environments. For example, for a moderate size building having eight floors and a net area of 13,000 m2, it takes only 104 s to extract the required building information to run a simulation. This approach can be used for any building configuration extracting automatically needed features to run pedestrian simulations. In this way, architects, urban planners, fire safety engineers, transport modellers and many other users without the need to manually interact with a building model can perform immediately crowd simulations.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3