On the Performance of Solar Thermophotovoltaics (STPVs) and Wavelength-Selective Thermophotovoltaics (TPVs): Case Study of a High-Rise Residential Building in a Hot and Semi-Arid Climate

Author:

Safavi Maryam1ORCID,Khoshbakht Maryam2ORCID

Affiliation:

1. Department of Architecture, Damavand Branch, Islamic Azad University, Damavand 7891139718, Iran

2. Cities Research Institute, Griffith University, Brisbane 4215, Australia

Abstract

Utilizing integrated solar systems and renewable energy sources has the potential to not only decrease the CO2 emissions of buildings but also provide access to more affordable energy alternatives compared to fossil fuels, especially considering the recent rise in prices. Nevertheless, many designers and project decision makers are hesitant to embrace solar technologies due to the uncertainty surrounding the cost–benefit balance. This paper presents a case study of the design process, highlighting the energy-saving and cost–benefit aspects of a solar façade featuring solar thermophotovoltaics (STPVs) and wavelength-selective thermophotovoltaics (TPVs) in a high-rise residential building situated in the semi-arid climate of Tehran, Iran. The simulation methodology consists of EnergyPlus Engines in Rhino, along with the Ladybug and Honeybee plugins throughout the solar façade design process. The solar façade incorporating STPV yielded energy savings of 25 kWh per square meter, marking a 34% reduction compared to a standard façade. In contrast, the TPV demonstrated energy savings of 35 kWh per square meter, indicating a 48% decrease in energy consumption compared to a regular façade. This research indicates that, particularly in semi-arid climatic conditions, TPV systems exhibit a superior performance when integrated into the façades of high-rise structures; yet, due to the low electricity prices in the region, neither STPVs nor TPVs are financially viable. The study contributes to raising awareness, fostering technological innovations, influencing policy discussions, and promoting the adoption of sustainable practices in the field of energy and architecture.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3