In-Plane Failure Mechanism and Strength Design of Plate-Tube-Connected Circular Steel Arches

Author:

Yuan Xigui1,Yuan Bo2,Shi Minjie2

Affiliation:

1. School of Urban Construction, Chengdu Polytechnic, Chengdu 610218, China

2. Research Center of Space Structures, Guizhou University, Guiyang 550025, China

Abstract

The in-plane elastoplastic failure mechanism of plate-tube-connected steel circular arches with inverted triangular cross sections is investigated in this study by using theoretical derivation and numerical simulation. First, the in-plane elastic buckling load formula of the arch under full-span uniform radial load (FSURL) is presented. Then, the limited conditions of avoiding the connecting plate and chord local failure before global elastic instability are derived. Lastly, the elastic–plastic failure mechanisms of arches are studied under FSURL, full-span uniform vertical load (FSUVL), and half-span uniform vertical load (HSUVL). It is found that the arch will experience global failure, chord local failure, combined connecting plate and chord failure, and connecting plate local failure under FSUVL and HSUVL. The failure mode is mainly related to the stiffness of the connecting plate. The corresponding design formulas are proposed for the global failure of arches and local failure of the chord. The proposed formulas and FE results are in good agreement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3