Improvement of the Cracking Moment-Based Asphalt Mixture Splitting Test Method and Splitting Strength Research

Author:

Guan Hongxin1,Pan Wang1,Yang Hairong1,Yang Yuxuan12

Affiliation:

1. School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. Wuhan Comprehensive Transportation Design and Research Institute, Wuhan 430012, China

Abstract

The asphalt mixture splitting test is one of the most important methods for measuring asphalt’s tensile properties. To characterize the limitations of the traditional splitting test and the influence of the specimen size and loading conditions on the accuracy of the test, the factors affecting the strength of the splitting test were analyzed to reveal the splitting failure state and establish a unified representation model between the splitting and direct tensile tests. Initially, the moment of specimen cracking was taken as a key indicator, combined with image processing technology, to establish a set of criteria to judge the splitting test. Subsequently, standardized splitting tests were conducted and compared to tests of different specimen sizes and loading methods. Based on the octahedral strength theory, the stress points before and after the improved test were compared to the existing failure criteria. Direct tensile and splitting tests were conducted at different rates, and a unified strength–rate function model was established, realizing the unified representation of direct tensile and splitting tests. The research results indicate that the standardized splitting test is prone to the phenomenon wherein the specimen end face cracks before the center, affecting the accuracy of the test and potentially leading to redundant material strength evaluations. Using a loading method with a “35 mm specimen thickness” and a “0.3 mm rubber gasket + 12.7 mm arc-shaped batten” can essentially achieve the test hypothesis of “cracking at the center first”, resulting in less discrete outcomes and closer alignment to the three-dimensional stress failure state. The tensile and splitting strengths are both power function relationships with the rate as the independent variable, establishing a unified function model of the tensile and failure strengths. The research provides a more reliable testing method and calculation model for asphalt pavement structure design, and it also provides an effective basis for the improvement of splitting tests on materials such as concrete and rock.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3