Abstract
The effect of freeze–thaw (F–T) in the seasonal frozen area would lead to damage to asphalt pavement. After water enters asphalt pavement, the water in voids would expand at a lower temperature, which could change the void content and number, affecting the macro mechanical properties of the asphalt mixture. The rapid development of CT scanning and digital image processing (DIP) provides powerful technical support for the research of asphalt mixture meso volume characteristics. In this paper, the mechanical properties of basalt fiber reinforced asphalt mixture subjected to F–T cycles were tested at different temperatures to clarify the decay law of mechanical properties under F–T cycles. Then, the meso images of the asphalt mixture under various F–T cycles could be obtained by using CT tomography. Based on DIP technology, the meso characteristic parameters of CT images for asphalt mixture were extracted, and the development of asphalt mixture freeze–thaw damage was further analyzed. The test results showed that with the F–T cycle, the macro mechanical properties of the asphalt mixture rapidly declined in the early stage of the F–T cycle and gradually tended to be flat. There would be serious damage inside the asphalt mixture in the late stage of the F–T cycle. The damage to the mechanical properties of the asphalt mixture under the F–T cycle can be attributed to the change in the internal mesostructure of the asphalt mixture. Based on the grey relational analysis theory, the formation of the connected void was the main factor affecting the damage in the early stage of the F–T cycle, while the formation of new voids mainly affected the later development of F-T damage.
Funder
Scientific and Technological Project of the Science and Technology Department of Jilin Province
National Natural Science Foundation of China
Scientific Research Project of the Department of Education of Jilin Province
China Postdoctoral Science Foundation
Yulin Science and Technology Project of Guangxi Zhuang Autonomous Region
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献