Effects of Train-Induced Unsteady Airflow on Air Quality and Air Distribution in a Subway Station

Author:

Li Hu,Han Hong,Liu Xinjin,Chen Shujing,Wang Jingqian,Lei Wenjun

Abstract

Using train-induced unsteady airflow in transitional seasons can greatly reduce the energy consumption of a subway station’s mechanical ventilation. However, the unsteady airflow carries the particles from tunnels into subway platforms, and airflow distribution at controllable vents is uneven. To determine the variation in PM2.5 (particulate matter of 2.5 micrograms or less) concentration and the air velocity distribution at the vents, field tests were conducted. The results showed that the PM2.5 concentrations at the vents and platform were positively correlated with the air velocity. The average ratio of the PM2.5 concentration at the vents to that on the platform was 71.15%. The maximum PM2.5 concentration and average PM2.5 concentration on the platform were 0.067 mg/m3 and 0.037 mg/m3, respectively. The air velocity distribution along the length of the platform conformed to logistic regression. Adjustment of the opening height of the vents was proposed to improve the air velocity distribution. Through numerical simulation, the ratio of the minimum airflow rate to the maximum airflow rate was increased from 5.9% to 37.5% after adjustment. This method is helpful for the uniform distribution of the airflow rate. This study will provide references for the design and operation of the vents of subway stations.

Funder

National Natural Science Foundation of China

Scientific and Technological Innovation Project for Youth of Shandong Provincial Colleges and Universities

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3