Research on the Crushing of Reinforced Concrete Two-Way Slabs by Pulse Power Discharge Technology

Author:

Lin Xinxin1,Yang Fei2,Liu Youwei3,Yang Yang4

Affiliation:

1. College of Civil Engineering and Architecture, Xiamen City University, Xiamen 361008, China

2. Fuzhou Academy of Building Research Co., Ltd., Fuzhou 350001, China

3. Xiamen Municipal Construction Group Co., Ltd., Xiamen 361008, China

4. Huadong Engineering (Fujian) Corporation Limited, Fuzhou 350003, China

Abstract

The application of pulse power discharge (PPD) technology in the crushing and dismantling of concrete structures has characteristics related to both green and environmental protection, as well as safety and reliability, with broad application prospects in the construction and municipal engineering fields in dense urban areas. Nevertheless, the research into using this technology to break reinforced concrete (RC) slabs is very limited, while the influence of key parameters on the crushing effect of reinforced concrete slabs is not clear. To solve this problem, a finite element model of an RC slab was established by ABAQUS. The effect of a shock wave generated by PPD on the surrounding concrete was simulated by an explosion-load equivalent, and the development process of concrete crack was simulated by a cohesive force model. Based on the results of the model analysis, the effects of reinforcement spacing, as well as diameter and concrete strength on the crushing effect of RC slabs were investigated. The results show that the increase in reinforcement diameter and the decrease in reinforcement spacing have a significant effect on limiting the development of cracks. According to the development of cracks, they can be divided into three types: edge cracks, cracks between central holes, and cracks between edge holes. The influence of reinforcement spacing and diameter on the first two crack widths is the most obvious. The increase in concrete strength also reduces the width of cracks. Based on the analysis results, the calculation expressions of the crushing effect of the PPD technique on RC slabs were established, which provides theoretical support for the popularization and application of this technique.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3