Experimental Investigation of Self-Compacting Concrete with Recycled Concrete Aggregate

Author:

Ahmed Sayed1,El-Zohairy Ayman2ORCID,Eisa Ahmed1ORCID,Mohamed Mohamed1ORCID,Abdo Ayman1

Affiliation:

1. Structural Engineering Department, Zagazig University, Zagazig P.O. Box 44519, Egypt

2. Department of Engineering and Technology, Texas A&M University—Commerce, Commerce, TX 75429, USA

Abstract

Due to the depletion of natural aggregates and raw materials for contemporary construction, the construction and demolition waste existing in old concrete structures is an imperative problem. Cutting down on exploiting natural aggregates and reusing construction and demolition waste in the concrete industry are solutions to this problem. This paper investigated the replacement of natural coarse aggregate (NCA) with recycled concrete aggregates (RCA) with different ratios (0%, 50%, 75%, and 100%) in producing self-compacting concrete (SCC). Different components of supplementary cementitious materials (SCMs), such as nano-silica (NS), fly ash (FA), and metakaolin (MK), as well as PVA fibers, were incorporated into the SCC mixtures. The fresh properties (slump flow, V-funnel, and L-box test) and hardened properties (compressive strength, splitting tensile strength, and flexural strength), as well as the flexural behavior of SCC beams (load-carrying capacity, crack pattern, mid-span deflection, and flexural stiffness), were studied for all SCC mixes. The results of fresh and hardened concrete confirmed that it is possible to produce SCC with a 100% replacement of RCA with minimal effects on the concrete properties. The mixture of SCC with 100% RCA replacement, 20% MK, and 22% FA was the optimum mixture with acceptable fresh properties that complied with the EFNARC specifications. For 100% RCA replacement, the compressive strength was reduced by 8.20%, and the ultimate load and flexural stiffness increased by 3.20 and 16.25%, respectively, compared with the control mixture.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3