Numerical Simulation of Crack Propagation and Branching Behaviors in Heterogeneous Rock-like Materials

Author:

Xu Wei1,Zhao Shijun1,Zhang Weizhao2,Zhao Xinbo1

Affiliation:

1. School of Science, Qingdao University of Technology, Qingdao 266525, China

2. Xibei Mining Co., Ltd., Shandong Energy Group, Xi’an 710018, China

Abstract

The characterization and understanding of crack evolution in non-uniform geological structures are crucial for predicting the mechanical response of rock-like materials or structures under varying loading conditions. In this study, an improved Peridynamic model with a degree of heterogeneity characterized by random pre-breaking “bonds” coefficients is introduced to capture the intricacies of crack initiation, propagation, and branching behaviors in heterogeneous rock-like materials. MATLAB discrete programs for heterogeneous material models and PD simulation programs based on the FORTRAN language were developed. The effectiveness of the heterogeneous PD model in simulating crack propagation and branching patterns in heterogeneous materials has been verified through dynamic and static (quasi-static) loading cases with pre-notch. The different levels of heterogeneity not only affect the direction of crack propagation but also determine the crack deflection direction and branching patterns. The crack propagation path appears to possess obvious asymmetry in the crack propagation direction. As the load applied continues to increase, the asymmetric multi-crack branching phenomenon will occur. The higher the level of heterogeneity, the more complex the behaviors of crack propagation and branching become. This research provides valuable insights into the interplay of material heterogeneity and crack evolution, offering a foundation for improved numerical simulations and contributing to the broader field of geomechanics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Special Fund for Taishan Scholar Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3