Study on Mechanical Properties of Road Cement-Stabilized Macadam Base Material Prepared with Construction Waste Recycled Aggregate

Author:

Yuan Yingjie12,Hu Xianhu3,Wang Kai2,Liu Zhi3,Zhong Mingchen1,Meng Kun1ORCID

Affiliation:

1. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China

2. Qingdao Greensail Recycled Building Materials Co., Ltd., Qingdao 266043, China

3. Shandong Academy of Building Sciences Co., Ltd., Qingdao 266000, China

Abstract

At present, construction waste recycled aggregates only partially replace natural aggregates to prepare road-based materials. This study addressed this limitation and experimentally investigated the mechanical properties of cement-stabilized macadam base materials utilizing a construction waste recycled aggregate. The feasibility of using these raw materials to prepare cement-stabilized macadam bases was established via experimental validation. Subsequently, compaction tests were conducted to ascertain the maximum dry density and optimum moisture content in the mixture. The mechanical characteristics were further examined using unconfined compressive strength tests, analyzing and discussing the influences of varying cement dosages and curing periods on the material strength. The results indicate that the properties of the recycled aggregates satisfied specification requirements, demonstrating satisfactory mechanical properties. The unconfined compressive strength with a 7-day curing period and a 5% cement content fulfilled the technical standards for expressway-grade heavy and extremely heavy traffic, while that with a 6% cement content (with an added curing agent) met these requirements after just 1 day. Additionally, the curing agent enhanced the early strength of the recycled aggregate base material. This study has broken through the technical bottleneck of low content of recycled aggregate, achieved 100% replacement of natural aggregate, and promoted the sustainable development of the industry.

Funder

National Science Foundation for Young Scientists of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3