Experimental Study on Shear Strength of Roof–Snow Interfaces for Prediction of Roof Snow Sliding

Author:

Cao Xinli12,Mo Huamei12,Zhang Guolong12,Zhang Qingwen12,Fan Feng12

Affiliation:

1. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China

Abstract

The sliding of roof snow may result in surcharges of snow load on lower roofs or the injury of pedestrians on the ground. It is therefore of great significance to study the mechanism of roof snow sliding, such that prevention or control measures can be developed to manage the risk. Considering four commonly used roofing materials, glass, steel, membrane, and concrete, two types of experiments were carried out in this study to possibly reveal the influence of roofing materials on the shear strength of the roof–snow interface: one is the critical angle tests where the angle at which the snow starts to slide off from the roof is tested, and the other is the shearing tests which aim to test the shear strength of the roof–snow interfaces at specific temperatures. The results showed that the critical angle for roof snow sliding, as well as the shear strength of the roof–snow interface for the four considered roofing materials, show a U-shape trend with the increase in surface roughness and that the shear strength of the roof–snow surface ranges from 0.15 kPa to 2 kPa for the cases considered, while the strength reaches its maximum at certain temperatures near −5 °C for a specific roofing material and snow thickness. These findings could be a useful reference for future experimental or simulation studies on roof snow sliding.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

Heilongjiang Natural Science Foundation

Heilongjiang Provincial Postdoctoral General Fund

Publisher

MDPI AG

Reference20 articles.

1. On the Rates of Growth of Grains and Crystals in the South Polar Firn;Gow;J. Glaciol.,1969

2. Sloped roof snow loads using simulation;Sack;J. Struct. Eng. ASCE,1986

3. Evaluation of the shear frame test for weak snowpack layers;Jamieson;Ann. Glacial.,2001

4. Sintering and microstructure of ice: A review;Blackford;J. Phys. D Appl. Phys.,2007

5. Failure mechanic s of snow layers through image analysis;Barbero;Eur. J. Mech.-A/Solids,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3