Strengthening Behavior of Rectangular Stainless Steel Tube Beams Filled with Recycled Concrete Using Flat CFRP Sheets

Author:

Dabbagh Noaman Mohammed Ridha1,Al Zand Ahmed W.1ORCID,Liejy Mohammed Chyad12,Ansari Mohammad1ORCID,Tawfeeq Wadhah M.3,Badaruzzaman Wan Hamidon Wan1,Kaish A. B. M. A.1ORCID,Yaseen Zaher Mundher4

Affiliation:

1. Department of Civil Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia

2. Energy Research Unit, Al-Hawija Technical Institute, Northern Technical University, Kirkuk 36001, Iraq

3. Faculty of Engineering, Sohar University, Sohar 311, Oman

4. Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Abstract

Recently, the adoption of recycled concrete instead of normal concrete as infill material in tubular stainless steel members has received great attention from researchers regarding environmental improvement. However, the flexural behavior of recycled concrete-filled stainless steel tube (RCFSST) beams that have been repaired/strengthened using carbon fiber-reinforced polymer (CFRP) sheets via a partial-wrapping scheme has not yet been investigated, and is required for a variety of reasons, as with any conventional structural member. Therefore, this study experimentally tested six specimens for investigating the effects of using varied recycled aggregate content (0%, 50%, and 100%) in infill concrete material of stainless steel tube beams strengthened with CFRP sheets. Additionally, several finite element RCFSST models were built and analyzed to numerically investigate the effects of further parameters, such as the varied width-to-thickness ratios and yield strengths. Generally, the results showed that using 100% recycled aggregates in infill concrete material reduced the RCFSST beam’s bending capacity by about 15% when compared to the corresponding control specimen (0% recycled aggregate), with little difference in the failure mode behavior. Pre-damaged RCFSST beam capacity showed significant improvement (43.6%) when strengthened with three CFRP layers. The RCFST model with a lower w/t ratio showed better-strengthening performance than those with a higher ratio, where, the models with w/t ratios equal to 15 and 48 achieved a bending capacity improvement equal to about 18% and 35%, respectively, as an example. Furthermore, the results obtained from the current study are well compared by those predicted using the existing analytical methods.

Funder

Ministry of Higher Education, Malaysia, through the Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3