Experimental Study on the Flexural Behavior of I-Shaped Laminated Bamboo Composite Beam as Sustainable Structural Element

Author:

Li Jiannan1,Singh Amardeep12,Zhou Yiyi3

Affiliation:

1. School of Civil Engineering and Architecture, Changzhou Institute of Technology, Changzhou 213032, China

2. Department of Structural Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China

3. College of Mechanics and Materials, Hohai University, Nanjing 210000, China

Abstract

Laminated bamboo (LB) is considered a promising environmentally friendly material due to its notable strength and advantageous lightweight properties, making it suitable for use in construction applications. LB I-beams are a prevalent component in bamboo structures due to their ability to fully utilize their material properties and enhance efficiency when compared to beams with rectangular solid sections, while the characteristics of connections should be further studied. This paper presents an experimental investigation of the flexural behavior of I-shaped LB beams that are connected using self-tapping screws and LB dowels. Compared with glued beams of the same size, the findings of the study reveal that the primary failure modes observed in those two types of components were characterized by the separation of the component and web tensile fracture. The screw beam and dowel beam exhibited a reduced ultimate capacity of 43.54% and 30.03%, respectively, compared to the glued beam. Additionally, the ultimate deflections of the screw beam and dowel beam were 34.38% and 50.36% larger than those of the glued beam, respectively. These variations in performance can be attributed to the early breakdown of connectors. Based on design codes, it can be observed that the serviceability limits were in close proximity, whereas the ultimate strains of the top and bottom flanges were significantly lower than the ultimate stresses experienced under uniaxial loading conditions. As a result of the slip and early failure of connectors, the effective bending stiffness estimated by the Gamma method achieved better agreements before elastic proportional limit. Therefore, in future investigations, it would be beneficial to enhance the connector and fortify the flange as a means of enhancing the bending characteristics of an I-shaped beam.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Educational Department

Changzhou Sci & Tech Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3