Statistical Subspace-Based Damage Detection and Jerk Energy Acceleration for Robust Structural Health Monitoring

Author:

Hayat Khizar1,Mehboob Saqib1ORCID,Latif Qureshi Qadir Bux alias Imran2,Ali Afsar1,Matiullah 1,Khan Diyar3,Altaf Muhammad1

Affiliation:

1. Department of Civil Engineering, University of Engineering and Technology, Taxila 47080, Pakistan

2. Department of Civil and Environmental Engineering, College of Engineering and Architecture, University of Nizwa, Birkat-al-Mouz, Nizwa 616, Oman

3. Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 40-019 Katowice, Poland

Abstract

This paper introduces a multistep damage identification process that is both straightforward and useful for identifying damage in buildings with regular plan geometries. The algorithm proposed in this study combines the utilization of a multi-damage sensitivity feature and MATLAB programming, providing a comprehensive approach for the structural health monitoring (SHM) of different structures through vibration analysis. The system utilizes accelerometers attached to the structure to capture data, which is then subjected to a classical statistical subspace-based damage detection test. This test focuses on monitoring changes in the data by analyzing modal parameters and statistically comparing them to the structure’s baseline behavior. By detecting deviations from the expected behavior, the algorithm identifies potential damage in the structure. Additionally, the algorithm includes a step to localize damage at the story level, relying on the jerk energy of acceleration. To demonstrate its effectiveness, the algorithm was applied to a steel shear frame model in laboratory tests. The model utilized in this study comprised a total height of 900 mm and incorporated three lumped masses. The investigation encompassed a range of scenarios involving both single and multiple damages, and the algorithm proposed in this research demonstrated the successful detection of the induced damages. The results indicate that the proposed system is an effective solution for monitoring building structure condition and detecting damage.

Funder

University of Nizwa

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3