Investigation on Disaster Mechanism of Diversion Tunnel Induced by Gripper TBM in Hydrokarst Erosion Stratum and Engineering Measures

Author:

Yang Tengtian12ORCID

Affiliation:

1. China Railway Construction Bridge Engineering Bureau Group Co., Ltd., Tianjin 300300, China

2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an 710055, China

Abstract

In gripper tunnel boring machine (TBM) tunneling through complex geological formations, the safe and efficient recovery from large-scale collapses remains a formidable challenge. In this study, we investigate the causes of a 1246 m3 collapse that occurred during the gripper TBM tunneling in the diversion tunnel in Xinjiang, China. Various techniques including TSP seismic waves, CFC advanced water exploration, laboratory point load tests and packer permeability tests were employed for thorough research. The examination discloses that the water softening in biotite-quartz schist in fractured zones contributes significantly to the loosening and dislocation of rock layers along joints. The gripper TBM’s cutterhead exacerbates this process through cutting action and vibrations, causing large-scale instability and eventual rock mass collapse. To tackle this engineering problem, we propose a three-step treatment scheme comprising “Reinforcement-Backfill-Re-excavation”. Furthermore, we propose a technique to handle TBM collapses by creating a “protective shell” within the cavity. The safety and feasibility of these proposed solutions were thoroughly validated through numerical simulations. Also, we utilized the Hoek-Brown theory and Rostami prediction formula to establish recommended values for the total thrust and total torque of the TBM during the collapsed section. The proposed treatment scheme and estimated parameters were successfully applied, resulting in a comprehensive solution from collapse handling to tunneling. This study offers valuable details on effectively managing large-scale collapses in gripper TBM tunneling, which can be useful for similar tunnel engineering and improve safety and efficiency.

Funder

Tunnel and Underground Engineering New Technology and Application Innovation Team of Shaanxi Province Science and Technology Innovation Team Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3