A Mesoscopic Viewpoint on Slurry Penetration and Pressure Transfer Mechanisms for Slurry Shield Tunneling

Author:

Liu Keqi,Ding Wantao,Qu Chunxu

Abstract

The penetration characteristics of the slurry and the support pressure transfer mechanisms are critical to the tunnel face stability control during a mechanized excavation. In this paper, numerical calculations coupling computational fluid dynamics (CFD) with the discrete element method (DEM) are carried out to simulate sand column penetration tests considering different particle size ratios. The reasonableness of the numerical model is verified by comparing the variation patterns of the soil permeability coefficients monitored in the numerical tests with the results of existing laboratory tests. The mesoscopic transport characteristics of the slurry particles in the sand soil pores are considered based on numerical tests, while the slurry support effects corresponding to different penetration types are evaluated. Three main basic types of slurry infiltration are observed due to the different ratios of slurry particle size over soil pore size. For the first penetration type, the slurry particles are accumulated and able to form a supporting filter cake. The slurry support is effective because of the significant pressure drop generated on both sides of the filter cake. For the second penetration type, both a filter cake and an infiltration zone are present. A dense filling network is formed between the filter cake and the penetration zone. The third type corresponds to a purely penetration zone. An effective impermeable filling network cannot be formed, and the slurry support effect is not obvious. The development of slurry penetration distance shows an obvious time effect; the farther the penetration distance, the larger the slurry filtration loss, and the worse the transformation effect of slurry support pressure.

Funder

the Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference47 articles.

1. Horizontal earth pressure on perpendicular tunnel face;Horn,1961

2. The contribution of horizontal arching to tunnel face stability

3. The stability of a tunnel face with a free span and a non-uniform support

4. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material

5. Kinematical approach to the face stability analysis of shallow circular tunnels;Soubra;Proceedings of the 8th International Symposium on Plasticity,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3