Numerical Simulation of Mechanical Characteristics and Safety Performance for Pre-Cracked Tunnel Lining with the Extended Finite Element Method

Author:

Lu Xin12,Liu Yong3,Hou Xiaolong3,Chen Cai4,Gao Ruidan5

Affiliation:

1. School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China

2. Xi’an Highway Research Institute Co., Ltd., Xi’an 710065, China

3. School of Highway, Chang’an University, Xi’an 710064, China

4. CCCC First Highway Northwest Engineering Co., Ltd., Xi’an 710199, China

5. School of Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China

Abstract

The service performance of tunnel lining is affected by crack properties and development states. In this paper, numerical simulation models were established to investigate the mechanics characteristics and safety performance for lining structures under different cracks based on the extended finite element method (XFEM). Analyze multiple quantitative factors in simulation, including changes in crack location, crack length, and crack distribution range in the lining structure. The axial force and bending moment of the preset cracks in the lining structures were first studied. The maximum safety factor attenuation rate (Dkmax) was proposed to analyze the impact of longitudinal and annular cracks on the safety performance. The axial force at the vault of the lining arch is the most significantly affected by the combined longitudinal cracks at multiple locations. When the length of a longitudinal crack increases from 1 m to 6 m, the axial force value at the crack point decreases by 33.77%, 36.15%, and 11.32%. However, the bending moment value increases by 4.47 times, 2.50 times, and 1.69 times. Under the influence of longitudinal cracks in an “arch crown + arch shoulder”, “arch crown + arch waist”, and “arch crown + arch shoulder + arch waist”, the axial force in the arch vault increased by 21.55%, decreased by 17.52%, and decreased by 13.45%. The distribution pattern of the bending moment under the influence of circumferential cracks shows convexity at the arch shoulder and arch foot, and concavity at the arch waist and side walls. The safety factor scatter curve with longitudinal cracks shows a gradual transition from a “W” shape to a “U” shape. The safety factor curve with circumferential cracks presents an approximately symmetrical wave-shaped distribution.

Funder

Shaanxi Transportation Technology Project

Key R&D Project of Shaanxi Province

Publisher

MDPI AG

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3