Mechanical Consequences of Suffusion on Gap-Graded Soils with Stress Anisotropy: A CFD–DEM Perspective

Author:

Yu Gengfeng1,Yu Chao2,Fu Zunan3,Jing Jianguo3,Hu Zheng45ORCID,Pan Kun2ORCID

Affiliation:

1. Haining Water Resources Construction Management Co., Ltd., Jiaxing 314499, China

2. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China

3. Power China Huadong Engineering Co., Ltd., Hangzhou 310005, China

4. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China

5. State Key Laboratory for Tunnel Engineering, Guangzhou 510275, China

Abstract

Natural soil in geotechnical engineering is commonly in the anisotropic stress state, but the effect of stress anisotropy on soil suffusion remains unclear. In this study, the coupled computational fluid dynamics–discrete element method was utilised to simulate the complete suffusion process of gap-graded soils by introducing a vertical seepage flow through the soil assembly. The mechanical consequences of suffusion on gap-graded soils were evaluated by comparing the triaxial shear responses of soil specimens before and after suffusion. The results indicated that the specimens with greater stress anisotropy are more vulnerable to suffusion, particularly those with the principal stress that is coincident with the principal flow direction. Compared with the isotropically consolidated specimens, the specimens with greater stress anisotropy exhibited more pronounced reduction in shear strength and secant stiffness after suffusion. The effects of stress anisotropy on the suffusion and mechanical properties of gap-graded soils were also evaluated from a microcosmic perspective in terms of force chain, coordination number, and fabric tensor.

Funder

National Key Research and Development Program of China

Natural Science Foundation of China

Guangdong Provincial Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3