Experimental Study on Hysteretic Performance of Steel Moment Connection with Buckling-Restrained Dog-Bone Beam Sections

Author:

Feng Shiqiang1,Yang Yong12,Hao Ning1,Chen Xin1,Zhou Jiancheng1

Affiliation:

1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Key Lab of Structural Engineering and Earthquake Resistance of the Ministry of Education, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Steel beam–column connections with dog-bone beam sections have gained significant attention and have been extensively applied. This is attributed to their ability to effectively centralize and integrate plastic hinges, thereby diverting potential damage away from the beam ends during earthquake events. In order to achieve the enhancement of the ductility and energy dissipation of connections by inhibiting local buckling during an earthquake event, a novel steel moment connection with buckling-restrained dog-bone beam sections was proposed in this paper. There were three types of proposed connections according to the different arrangements of restrained steel plates, including arranging the restrained plates only on the flanges, only on the web, and on both the flanges and webs of the dog-bone beam sections. In this study, three specimens with buckling-restrained dog-bone beam sections and one control specimen with a dog-bone beam section were tested under cyclic loading. The failure modes, hysteretic curves, skeleton curves, stiffness degradation ductilities, displacement ductility ratios, and energy dissipation capacities of the specimens were analyzed based on the experimental results to evaluate the seismic behavior of the proposed connections. The results indicated that the local buckling of the proposed connections was significantly reduced compared with the traditional connection with a dog-bone beam section under the condition of keeping the plastic hinges away from the beam–column connection core. The arrangement of the restrained plates in the dog-bone beam section had little effect on the bearing capacity and the initial stiffness, with errors all being within 6%. It is worth mentioning that the connection with restrained plates only on the flanges in the dog-bone beam sections showed a more obvious improvement in the deformation capacity and energy dissipation capacity of the connection, which increased by 21% and 16%, respectively. Additionally, high-quality welding between the beam and column, smooth cutting shapes on the weakened flanges, and the high-quality drilling of long slots at the fixed point in the restrained plates and the dog-bone beam sections should be guaranteed to improve the hysteretic stabilities of the proposed connections.

Funder

National Natural Science Foundation of China

Youth Innovation Team Research Project of the Education Department of Shaanxi Province

Publisher

MDPI AG

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3