Energy-Efficient Retrofitting under Incomplete Information: A Data-Driven Approach and Empirical Study of Sweden

Author:

Feng Kailun,Lu Weizhuo,Wang Yaowu,Man Qingpeng

Abstract

The building performance simulation (BPS) based on physical models is a popular method to estimate the expected energy-savings of energy-efficient building retrofitting. However, many buildings, especially the older building constructed several decades ago, do not have full access to complete information for a BPS method. Incomplete information generally comes from the information that is missing, such as the U-value of part building components, due to incomplete documentation or component deterioration over time. It also comes from the case-specific incomplete information due to different documentation systems. Motivated by the available big data of real-life building performance datasets (BPDs), a data-driven approach is proposed to support the decision-making of building retrofitting selections under incomplete information conditions. The data-driven approach constructed a Performance Modelling with Data Imputation (PMDI) with integrated backpropagation neural networks, fuzzy C-means clustering, principal component analysis, and trimmed scores regression. An empirical study was conducted on real-life buildings in Sweden, and the results validated that the PMDI method can model the performance ranges of energy-efficient retrofitting for family house buildings with more than 90% confidence. For a target building in Stockholm, the suggested retrofitting measure is expected to save energy by 12,017~17,292 KWh/year.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Swedish Research Council for Environment Agricultural Sciences and Spatial Planning

EU HORIZON 2020 AURORAL

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3