Comparative Analysis of Productivity Methods to Evaluate Thermal Comfort in Classrooms through Hierarchical Clustering

Author:

Mendes da Luz Inaiele1,Lourenço Niza Iasmin1ORCID,Broday Evandro Eduardo1ORCID

Affiliation:

1. IEQ Lab, Federal University of Technology—Paraná (UTFPR), Rua Doutor Washington Subtil Chueire 330, Jardim Carvalho, Ponta Grossa 84017-220, Brazil

Abstract

This research examined the modeling of productivity with thermal comfort using various models in a case study conducted in classrooms at a university in Southern Brazil. A total of thirteen models were selected after performing a literature review to identify the main models. Through the application of hierarchical clustering to separate the models into groups with similarities, the results identified four groupings: the first focused on temperature, the second associated age groups with Thermal Sensation Vote (TSV), the third compared different age groups, and the fourth highlighted “Model 11”, derived from structural equations in air-conditioned classrooms in China, revealing poor performance due to its incompatibility with temperature variations in productivity. Meanwhile, “Model 5”, developed using ordinary regression in air-conditioned offices in Japan, showed the lowest Root Mean Square Error (RMSE), emerging as the most accurate in predicting productivity associated with thermal comfort. The use of objective methods to assess productivity and the application of regression analysis in modeling, as identified in the literature review, is noteworthy. The evaluation of the models’ performance also explored the impact of the independent variables on their scope. Through cluster analysis, reasons behind discrepancies in model performance were identified, providing insights into best practices for representing the relationship between thermal comfort and productivity. These results offer valuable perspectives for developing more effective models in this field and reveal a wide methodological diversity in the approach to the subject.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

The National Council for Scientific and Technological Development

Publisher

MDPI AG

Reference48 articles.

1. Effects of Indoor Environment Factors on Productivity of University Workplaces: A Structural Equation Model;Liu;Build. Environ.,2023

2. Quantitative Measurement of Productivity Loss Due to Thermal Discomfort;Lan;Energy Build.,2011

3. Continuous IEQ Monitoring System: Performance Specifications and Thermal Comfort Classification;Parkinson;Build. Environ.,2019

4. (2021). Thermal Environmental Conditions for Human Occupancy (Standard No. ASHRAE Standard 55-2020).

5. Fanger, O.P. (1970). Thermal Comfort: Analysis and Applications in Environmental Engineering, McGraw-Hill.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3