Weaving Octopus: An Assembly–Disassembly-Adaptable Customized Textile Hybrid Prototype

Author:

Cui Ziqi1,Zhang Siman1ORCID,Viscuso Salvatore1,Zanelli Alessandra1

Affiliation:

1. TextilesHUB Research Laboratory, Department of Architecture, Building Environment and Construction Engineering (DABC), Politecnico di Milano, 20133 Milano, Italy

Abstract

As global challenges evolve rapidly, lightweight architecture emerges as an effective and efficient solution to meet rapidly changing needs. Textiles offer flexibility and sustainability, addressing spatial requirements in urban and residential designs, particularly in underutilized areas. This study developed a user-friendly and customizable textile hybrid structure prototype by exploring different weaving methods to find more flexible and adaptable solutions. The research adopts a three-stage process: concept design, parametric simulation prototype, and physical scale-up testing. Methodologies include Finite Element Analysis (FEA) for assessing structural bending and tensile behavior, evolutionary computation for multi-objective optimization, Arduino for enabling interactive dynamic and lighting systems, and a website interface for bespoke decisions. Results revealed a groundbreaking textile hybrid prototype, applicable individually or collectively, with flexible assembly and disassembly in various scenarios. The prototype also offers an eco-friendly, cost-efficient facade renovation solution, enhancing aesthetics and providing shading benefits. The research encompasses interactive lightweight construction design, bending-active textile hybrids, form-finding, circular economy, and mass customization, contributing to advances in lightweight construction design while promoting sustainable practices in textile architecture.

Funder

DABC R&D founding and TextilesHUB laboratory of Politecnico di Milano

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3