Design and Thermal Environment Analysis of a Decentralized Cooling System with Surface-Mount Heat Pipe Exchangers on Servers in Data Centers

Author:

Yuan XiaoleiORCID,Zhou Xuetao,Liang YuminORCID,Pan YiqunORCID,Kosonen RistoORCID,Lin Zhongping

Abstract

This paper proposes a decentralized cooling system combined with a traditional computer room air conditioning unit and server-level heat pipe exchangers for thermal environment optimization in a data center. Two cooling strategies, with heat exchangers installed above and below the servers respectively, are proposed and compared with the original CRACs system in terms of thermal environment. The simulation results of the original data center model are in good agreement with the on-site measurement results, and thus its reliability can be validated. The results show that a decentralized cooling system can effectively improve the thermal environment in data centers. To obtain the highest cooling efficiency, altogether 18 cases, where heat pipe exchangers were installed at different locations and heights, are analyzed and compared. The results show that the thermal environment is optimal when heat pipe exchangers are installed 0.01 m below each server. The local hotspot temperature is reduced by 6.8 °C, and the temperature distribution of the rack is the most uniform, which can effectively reduce the heat accumulation in data centers.

Funder

National Natural Science Foundation of China

Academy of Finland

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advancements in thermal management technologies for cooling of data centers;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-06-26

2. Waste heat recoveries in data centers: A review;Renewable and Sustainable Energy Reviews;2023-12

3. A critical review on the thermal management of data center for local hotspot elimination;Energy and Buildings;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3