Compressive Behavior of a Fully Prefabricated Liftable Connection for Modular Steel Construction

Author:

Deng En-Feng,Lian Jun-Yi,Liu ZheORCID,Zhang Guang-Cao,Wang Shi-Bo,Cao Dian-Bin

Abstract

Modular steel construction (MSC) consists of the off-site prefabrication of a fully finished module and the on-site assembling of the module unit. The popularity of MSC is on the rise, attributable to its technical advantages of speed and quality of buildings with repetitive units. Inter-module connection is critical for the overall stability and load-bearing capacity of MSC. An innovative, fully prefabricated liftable connection (FPLC) using standard corner fittings and long stay bolts is proposed in this paper. This paper focuses on the axial compressive behavior and design of FPLC. Five full-scale specimens were tested under axial compression. Local buckling of the column and shear of the long stay bolts were observed during the test. It can be concluded from the test results that the load-bearing capacity may decrease as the number and diameter of the stay bolts increase. A three-dimensional nonlinear finite element model (FEM) was developed and validated against the test results by general purpose finite element software ABAQUS. Furthermore, a parametric study was conducted using the verified FEM to provide a better understanding of the axial compressive behavior of the FPLC. The results of the parametric study indicated that the corner fitting can be up to 15% lighter for columns with thicknesses of 6 mm and 8 mm without substantial reduction of the axial load-bearing capacity of the FPLC. Moreover, the location of the column can be adjusted to achieve a uniform Von Mises stress and equivalent plastic strain (PEEQ) distribution of the connection. The presented research work provides an engineering-practical inter-module connection on its axial compressive behavior, which will provide helpful references for further application of MSC.

Funder

Key R&D Project (Major Scientific and Technological Innovation Project) of Shandong Province

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3