Numerical Study of Micro-Thermal Environment in Block Based on Porous Media Model

Author:

Lei Jie,Wang Dengyun,Chen Zhenqian

Abstract

The mitigation of the heat island effect has become one of the most challenging issues with the rapid urbanization and increased human activities. A standard model and a porous media model were developed to simulate the microthermal environment in the presence of anthropogenic heat in Nanjing Xinjiekou block. The accuracy of the simulation results was verified by field measurement data. Compared with the standard CFD method, the porous media method reduces the number of meshes by 27.8% and the total computation time by 66.7%. By comparing and analyzing the thermal environment of the block with various porosities and heat intensities at different heights, calculations proved that the velocity is positively correlated with the porosity change, and the temperature is negatively correlated with it in contrast. The temperature increases linearly with the increase in anthropogenic heat intensity under the block height range, and the gradient is about 0.025 K/W at the height of 2 m. The porous media approach allows for effective prediction of the micro-thermal environment in the initial stages of urban design while increasing the porosity of the block and controlling the intensity of anthropogenic heat emissions can be a prominent means of improving the thermal environment.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3