The Structural Behavior of Reinforced Concrete Beams Made with Locally Produced Recycled Aggregate in the UAE

Author:

Sagheer Abdullah M.1ORCID,Tabsh Sami W.1ORCID,Yehia Sherif1

Affiliation:

1. Department of Civil Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates

Abstract

In this study, the feasibility of utilizing locally produced coarse recycled aggregate (RA) from demolition waste in the UAE for structural applications was investigated. A comprehensive literature review on the subject showed that the shear and flexural responses of reinforced beams utilizing aggregate from concrete demolition waste are greatly dependent on the aggregate replacement ratio and the quality of the recycled aggregate. The experimental program in this study consisted of three phases. Phase I focused on the evaluation of the physical and mechanical characteristics of the RA, Phase II addressed the mix design and fresh and hard properties of the concrete, and Phase III dealt with the flexural and shear behavior of structural members. The research involved twelve 150 mm × 300 mm reinforced concrete beams with a length of 1500 mm or 2000 mm that were made with 0% (control), 50%, or 100% recycled coarse aggregate, replacing natural coarse aggregate (NA). Two target concrete compressive strengths, 25 and 35 MPa, were considered in the investigation. The results showed that the recycled aggregates had lower crushing and LA abrasion values by 40% and 18–28%, respectively, whereas the absorption capacity was 40–300% higher compared to the natural aggregate. In addition, the mechanical properties of the concrete made with different replacement ratios (R%) of RA were either similar or slightly less than those of the control mix. The shear beam tests with fc′ = 25 MPa showed that the 50%- and 100%-replacement-ratio beams demonstrated closely matched normalized shear strength values that exceeded their corresponding NA beam by 12.5%, while the shear beam tests with fc′ = 35 MPa showed that the NA beam exhibited normalized shear strength surpassing the 50% RA and 100% RA beams by 12.5% and 17.5%, respectively. In the flexural beam tests, the flexural strength exhibited minimal disparities for the beams that shared the same RA% but differed in their compressive strength targets, and overall, the variation in the RA% had a marginal impact on the flexural strength of the beams. Further, an increase in the RA% corresponded to an increase in the shear ductility index, which was in contrast with the findings on the flexural ductility index. Furthermore, predictions of flexural strength using the ACI318-19 code and shear strength using the strut-and-tie model yielded comparable results to the experimental ones.

Funder

BEEAH Group|Holding Company Sharjah, UAE

American University of Sharjah and the College of Engineering

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference56 articles.

1. Influence of recycled concrete aggregates on strength properties of concrete;Tabsh;Constr. Build. Mater.,2009

2. Strength and Durability Evaluation of Recycled Aggregate Concrete;Yehia;Int. J. Concr. Struct. Mater.,2015

3. Yehia, S., and Abdelfatah, A. (2016, January 1–2). Examining the Variability of Recycled Concrete Aggregate Properties. Proceedings of the International Conference on Civil, Architecture and Sustainable Development (CASD-2016), London, UK.

4. Flexural Behavior of Reinforced Recycled Concrete Beams;Sato;J. Adv. Concr. Technol.,2007

5. Experimental Study on Flexural Property of Reinforced Concrete Beams with Recycled Aggregate of Construction Waste;Du;Key Eng. Mater.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3