Numerical Study on the Seismic Behavior of Steel–Concrete Composite Frame with Uplift-Restricted and Slip-Permitted (URSP) Connectors

Author:

Wu Zhenhao12,Nie Xin2ORCID,Zhao Jizhi3,Wang Wei2ORCID,Duan Linli1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China

3. School of Civil Engineering, Chongqing University, Chongqing 400044, China

Abstract

Uplift-restricted and slip-permitted (URSP) connectors have been demonstrated to effectively enhance the anti-cracking performance of RC slabs in negative moment areas. While their efficacy is recognized, studies of composite frames utilizing URSP connectors remain scarce, limiting their application in construction. This research undertakes a numerical analysis of the seismic performance of steel–concrete composite frames that employ URSP connectors. The influence of key design parameters on seismic behavior is scrutinized. Leveraging prior tests on composite frames with URSP connectors carried out by the authors’ group, a sophisticated three-dimensional FEM model is crafted. This model, built using the ABAQUS software (2016), accounts for the intricate mechanical behaviors of shear connectors. The fidelity of the FEM model is validated through a juxtaposition of numerical and test outcomes, assessing strain distribution, damage patterns, and load–displacement curves. This numerical model serves as a basis for the study, exploring the impacts of three crucial design parameters on structural seismic performance. The findings suggest that the arrangement length of URSP connectors should be constrained to less than half of the frame beam’s span to optimize mechanical performance during seismic events. Additionally, enhancing both the flange thickness and the steel beam’s height is recommended to further bolster structural integrity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3