Affiliation:
1. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
Abstract
In the field of building information modeling (BIM), converting existing buildings into BIM by using orthophotos with digital surface models (DSMs) is a critical technical challenge. Currently, the BIM reconstruction process is hampered by the inadequate accuracy of building boundary extraction when carried out using existing technology, leading to insufficient correctness in the final BIM reconstruction. To address this issue, this study proposes a novel deep-learning- and postprocessing-based approach to automating reconstruction in BIM by using orthophotos with DSMs. This approach aims to improve the efficiency and correctness of the reconstruction of existing buildings in BIM. The experimental results in the publicly available Tianjin and Urban 3D reconstruction datasets showed that this method was able to extract accurate and regularized building boundaries, and the correctness of the reconstructed BIM was 85.61% and 82.93%, respectively. This study improved the technique of extracting regularized building boundaries from orthophotos and DSMs and achieved significant results in enhancing the correctness of BIM reconstruction. These improvements are helpful for the reconstruction of existing buildings in BIM, and this study provides a solid foundation for future improvements to the algorithm.
Reference43 articles.
1. Toward Building and Civil Infrastructure Reconstruction from Point Clouds: A Review on Data and Key Techniques;Xu;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2021
2. Challenges of Urban Digital Twins: A Systematic Review and a Delphi Expert Survey;Lei;Autom. Constr.,2023
3. Comparison of 2D and 3D Wall Reconstruction Algorithms from Point Cloud Data for As-Built BIM;Bassier;J. Inf. Technol. Constr.,2020
4. Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus;Lu;J. Manag. Eng.,2020
5. Alfio, V.S., Costantino, D., and Pepe, M. (2020). Influence of Image TIFF Format and JPEG Compression Level in the Accuracy of the 3D Model and Quality of the Orthophoto in UAV Photogrammetry. J. Imaging, 6.