The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete

Author:

Alnemrawi Bara’a R.1ORCID,Al-Rousan Rajai1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

Abstract

The utilization of lightweight aggregate concrete (LWC) plays a major role in reducing the self-weight of CFST (concrete-filled steel tube) columns, which is reflected in the behavior of the structural system. This paper aims to investigate the characteristics of lightweight concrete-filled steel tubular (LWCFST) columns under an axial compressive load, using a total of (48) LWCFST column models. The simulated models were divided into four groups with different concrete compressive strength, length-to-diameter ratios (L/D), and diameter-to-thickness ratios (D/t). Four concrete compressive values were examined (30, 40, 50, and 60) MPa, three length-to-diameter ratios short (L/D = 3), medium (L/D = 6), and long (L/D = 9), and four diameter-to-thickness ratios (36, 31, 26, and 21). The method of nonlinear finite element analysis (NLFEA) was used to fulfill the objective of this study where results were presented as graphical plots between the compressive loading versus the axial and lateral strains along with the failure modes. In addition, the results were compared with the AISC360-16 and EC4 codes predictions to examine their applicability on the LWCFST columns where the AISC was overpredicted in most cases with higher percentages under lower (L/D) values, whereas the EC2 was underestimated in most cases with high percentages up to 28%, which become closer to the NLFEA predictions at higher (L/D) values. It has been revealed that the utilization of steel tubes significantly improves the LWCFST column’s mechanical performance, ductility, compressive strength, and toughness. Moreover, the structural behavior of the LWCFST columns and their associated failure modes was found to be highly affected by the geometrical properties of the CFST column (i.e., L/D ratio and D/t ratio) where specimens with small tube thickness show bad behavior. Finally, the utilization of high-strength concrete has a favorable performance compared to the utilization of thick steel tubes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3