A Seismic Checking Method of Engineering Structures Based on the Stochastic Semi-Physical Model of Seismic Ground Motions

Author:

Ding YanqiongORCID,Xu Yazhou,Miao Huiquan

Abstract

A seismic checking method of engineering structures based on the stochastic semi-physical model of seismic ground motions is developed. Four groups of stochastic ground motions are generated using the stochastic semi-physical model of seismic ground motions. In conjunction with the probability density evolution method (PDEM) and the idea of the equivalent extreme-value event, the dynamic reliabilities of an engineering structure are evaluated. The dynamic reliability of the structure is taken as an index for seismic checking. A five-story reinforced concrete frame structure is analyzed using both the response spectrum method and the proposed method. Some features of the instantaneous probability density function (PDF) and its evolution, the extreme value distribution, and the dynamic reliability are discussed and compared with the results of the response spectrum method in the Chinese seismic code. The seismic checking results of the response spectrum method show that the structure is safe, while the results of the proposed method reveal a failure probability as high as 35.39%. Moreover, the structure has such different reliabilities when it is excited by different groups of simulated seismic ground motions. It reveals that a structure designed according to the seismic code may carry a high risk of failure. The proposed method provides a more accurate way for the evaluation of the reliabilities of engineering structures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference44 articles.

1. ASCE/SEI 7-05; Minimum Design Loads for Buildings and Other Structures,2010

2. EN 1998-1. Eurocode 8, Design of Structures For Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Building,2004

3. Evolutionary Spectra and Non-Stationary Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3