An Energy Dissipating Seismic Connector for Precast Concrete Shear Walls

Author:

Aljuboori Mohammed,Tabatabai HabibORCID

Abstract

In this study, several steel connector shapes were analytically evaluated as potential new seismic energy dissipating devices between vertical precast concrete shear wall panels. Based on the results of analytical and experimental studies, a multiple yield zone (MYZ) connector is proposed due to its improved performance (in energy dissipation) when compared to the conventional U-shaped flexure plate (UFP) device. Unlike the UFP, the MYZ connector provides stiffness and energy dissipation in both horizontal and vertical directions. The response of a shear wall building system utilizing the MYZ or UFP connectors was evaluated using a simplified frame model. The MYZ connector performed better than the UFP alternate both in terms of energy dissipation in the device and with respect to improved structure response. The use of multiple (distributed) yield zones through circular cut-outs is key in the performance enhancement observed with the MYZ connector.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference14 articles.

1. An Energy Dissipating Seismic Connector for Precast Concrete Shear Walls;Aljuboori;Ph.D. Thesis,2019

2. Reinforced-Concrete Shear Walls Retrofitted Using Weakening and Self-Centering: Numerical Modeling

3. Precast Seismic Structural Systems PRESSS-3: The Five-Story Precast Building Vol.3-5: Wall Direction Response. Depratment of Structural Engineering, University of California, La Jolla, California https://www.pci.org/PCI_Docs/Design_Resources/Guides_and_manuals/references/PRESSS/PRESSS-Phase-3_The-Five-Story-Precast-Test-Building_Vol-3-5_Wall-Direction-Response.pdf

4. Seismic performance of precast concrete structures with energy dissipating cladding panel connection systems

5. Seismic performance of precast concrete wall with vertical energy‐dissipating connection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3