Metamodel-Based Hyperparameter Optimization of Optimization Algorithms in Building Energy Optimization

Author:

Si Binghui,Liu FengORCID,Li Yanxia

Abstract

Building energy optimization (BEO) is a promising technique to achieve energy efficient designs. The efficacy of optimization algorithms is imperative for the BEO technique and is significantly dependent on the algorithm hyperparameters. Currently, studies focusing on algorithm hyperparameters are scarce, and common agreement on how to set their values, especially for BEO problems, is still lacking. This study proposes a metamodel-based methodology for hyperparameter optimization of optimization algorithms applied in BEO. The aim is to maximize the algorithmic efficacy and avoid the failure of the BEO technique because of improper algorithm hyperparameter settings. The method consists of three consecutive steps: constructing the specific BEO problem, developing an ANN-trained metamodel of the problem, and optimizing algorithm hyperparameters with nondominated sorting genetic algorithm II (NSGA-II). To verify the validity, 15 benchmark BEO problems with different properties, i.e., five building models and three design variable categories, were constructed for numerical experiments. For each problem, the hyperparameters of four commonly used algorithms, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO) algorithm, simulated annealing (SA), and the multi-objective genetic algorithm (MOGA), were optimized. Results demonstrated that the MOGA benefited the most from hyperparameter optimization in terms of the quality of the obtained optimum, while PSO benefited the most in terms of the computing time.

Funder

Natural Science Foundation of Jiangsu Province

Humanities and Social Sciences General Research Program of the Ministry of Education

Science and Technology Project of Jiangsu Department Housing and Urban-Rural Development China

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference46 articles.

1. IEA (2018). World Energy Statistics and Balances 2018, IEA.

2. Wetter, M., and Wright, J. (2003, January 11–14). Comparison of a generalized pattern search and a genetic algorithm optimization method. Proceedings of the 8th International Building Performance Simulation Association Conference, Eindhoven, The Netherlands.

3. A review of optimization based tools for design and control of building energy systems;Barber;Renew. Sustain. Energy Rev.,2022

4. Towards adoption of building energy simulation and optimization for passive building design: A survey and a review;Tian;Energy Build.,2018

5. A review on building energy efficient design optimization from the perspective of architects;Shi;Renew. Sustain. Energy Rev.,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3